首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3921篇
  免费   360篇
  国内免费   2篇
  2023年   32篇
  2022年   22篇
  2021年   105篇
  2020年   76篇
  2019年   115篇
  2018年   123篇
  2017年   116篇
  2016年   140篇
  2015年   213篇
  2014年   221篇
  2013年   302篇
  2012年   314篇
  2011年   317篇
  2010年   178篇
  2009年   171篇
  2008年   255篇
  2007年   206篇
  2006年   200篇
  2005年   191篇
  2004年   168篇
  2003年   151篇
  2002年   124篇
  2001年   57篇
  2000年   52篇
  1999年   57篇
  1998年   41篇
  1997年   28篇
  1996年   20篇
  1995年   12篇
  1994年   18篇
  1993年   17篇
  1992年   22篇
  1991年   18篇
  1990年   23篇
  1989年   14篇
  1988年   22篇
  1987年   9篇
  1986年   12篇
  1984年   7篇
  1983年   7篇
  1982年   13篇
  1981年   11篇
  1979年   4篇
  1977年   6篇
  1976年   9篇
  1975年   5篇
  1974年   12篇
  1973年   4篇
  1972年   7篇
  1968年   5篇
排序方式: 共有4283条查询结果,搜索用时 31 毫秒
51.
In a recent paper published in Cell, He and colleagues reported the identification and functional characterization of Beclin 2, a mammal-specific homolog of the evolutionarily conserved autophagy-regulatory and oncosuppressive factor Beclin 1. In spite of a non-negligible degree of sequence identity, Beclin 1 and Beclin 2 differ from each other in multiple aspects, including their functional profile as well as the genomic organization of the respective loci.Originally identified as a BCL-2-interacting partner capable of protecting mice from viral encephalitis1, Beclin 1 — the mammalian ortholog of yeast Atg6 — is nowadays well known as a core component of the class III phosphoinosite-3-kinase (PI3K) enzymatic complex that initiates the formation of autophagosomes in the course of macroautophagy (hereafter referred to as autophagy)2. Presumably owing to the critical function of autophagy in embryonic development, mice lacking both copies of the Beclin 1-coding gene (Becn1) die early during embryogenesis. Moreover, Becn1+/− mice suffer from a high incidence of spontaneous tumors, indicating that Beclin 1 acts as a haploinsufficient tumor suppressor3. At least in part, this reflects the central role that autophagy plays in the maintenance of intracellular homeostasis. Indeed, baseline levels of autophagy mediate the removal of various cytoplasmic entities that might favor oncogenesis, including damaged mitochondria and protein aggregates4. Conversely, established neoplasms often harness the cytoprotective functions of autophagy to their own benefit2. The pathophysiological relevance of autophagy is not limited to cancer, but extends to a large panel of human diseases, including neurodegenerative, cardiovascular and infectious conditions5. Thus, during the last decade autophagy-regulatory signaling pathways have been intensively investigated.Until now, Beclin 1 was considered as the only Beclin encoded by the mammalian genome, sharing some degree of structural homology with so-called “BH3-only” proteins, pro-apoptotic members of the BCL-2 family that are involved in the activation of cell death in response to stress6. In a recent paper published in Cell, the research group led by Beth Levine7 identified a human and a mouse protein sharing 57% and 44% sequence identity with human and mouse Beclin 1, respectively, de facto unveiling the existence of an additional, mammal-specific ortholog of Atg6, Beclin 2. The mouse Beclin 2 mRNA was detected in multiple organs including the brain, skeletal muscle, placenta, thymus and uterus, as was the human protein in both fetal and adult brain tissues. These data demonstrate that the current classification of mouse and human Beclin 2-encoding genes (i.e., NG_022940 and NG_028451) as pseudogenes is incorrect.The knockdown of Beclin 2 reduced several manifestations of basal or starvation-induced autophagy in cultured mammalian cells, including the degradation of the autophagic substrate p62, the aggregation of a fluorescent form of LC3 into cytoplasmic dots and the lipidation of endogenous LC3. All such effects, which were not due to an increased autophagosomal turnover (as verified in the presence of the lysosomal inhibitor bafilomycin A1), could be rescued upon the transgene-driven expression of a non-interferable Beclin 2 variant. Thus, similar to Beclin 1, Beclin 2 regulates autophagy7. In fact, Beclin 2 turned out to physically interact with several (but not all) components of the class III PI3K complex organized around Beclin 1, including the catalytic subunit VPS34 as well as the regulatory factors ATG14, AMBRA1 and UVRAG, but not RUBICON (Figure 1A). Beclin 2 also appeared to share with Beclin 1 the ability to bind BCL-2, although only the latter gets dissociated from such an interaction in the course of stress-induced autophagy7,8. As the greatest divergence between mammalian Beclins involves their N terminus, He and colleagues employed the N-terminal domain of Beclin 2 as a bait in a yeast two-hybrid screen, and identified G protein-coupled receptor (GPCR)-associated sorting protein 1 (GASP1) as a Beclin 2-specific interactor. Thus, similar to GASP1 (but not to Beclin 1), Beclin 2 was required for the agonist-induced lysosomal degradation of a subset of GPCRs including opioid receptor δ1 (DOR) and cannabinoid receptor 1 (CB1R). Importantly, such an activity, but not the capacity of Beclin 2 to regulate autophagic responses, appears to rely on the physical interaction between Beclin 2 and GASP1.Open in a separate windowFigure 1Common and divergent functions of mammalian Beclins. Specificity of the main interactors (A) and functions (B) ascribed to mammalian Beclin 1 and Beclin 2 to date. GPCR, G protein-coupled receptor; RTK, receptor tyrosine kinase.To obtain insights into the physiological functions of Beclin 2, He and colleagues attempted to generate Becn2−/− mice, finding that these animals survived embryonic and early post-natal development at sub-Mendelian rates (approximately 4%). Not only Becn2+/− and Becn2−/− mouse embryonic fibroblasts, but also the brain of Becn2+/− animals exhibited significant autophagic defects, corroborating the role of Beclin 2 in the regulation of autophagy in vivo. Moreover, these genotypes were associated with increased basal levels of multiple GPCRs, including CB1R and dopamine receptor D2 (DRD2)7. In line with the notion that increased CB1R signaling accrues food intake and hence favors obesity and insulin resistance, while pharmacological or genetic CB1R inhibition has opposite effects9, Becn2+/− mice accumulated more weight than their wild-type littermates in response to a standard (as well as to a high-fat) diet. At odds with their Becn1+/− counterparts, Becn2+/− mice also exhibited impaired glucose tolerance and decreased insulin sensitivity, two effects that could be reverted by a chemical CB1R antagonist7. Taken together, these data demonstrate that besides regulating autophagy, Beclin 2 plays a unique role in glucose metabolism.Beclin 1 is known to regulate various processes other than autophagy, including vacuolar protein sorting and the degradation of specific growth factor receptors10. Thus, in spite of 44% - 57% sequence identity, the two mammalian Beclins described to date are relatively different from each other, exhibiting functional profiles that overlap to a limited degree (Figure 1B). Interestingly, He and colleagues have previously shown that defects in stimulus-induced autophagy (including those introduced by the Becn1+/− genotype) are coupled to decreased endurance and altered glucose metabolism during acute exercise, as well as with an impaired capacity of training to protect mice against diet-induced glucose intolerance8. Part of these phenomena were shown to reflect defects in the AMP-activated protein kinase (AMPK)-dependent exposure of glucose transporters on the plasma membrane of skeletal muscle cells. It is therefore tempting to speculate that the metabolic phenotype of Becn2+/− may in part originate from peripheral defects in glucose handling linked to autophagy. Thus, although the force driving the divergence of mammalian Beclins remains to be elucidated, it may reflect the need for an integrated regulation of central and peripheral mechanisms of metabolic homeostasis. Further studies are required to address this hypothesis.  相似文献   
52.
This study highlights some of the effects of the application of Azotobacter chroococcum (INIFAT5 strain) on in vitro-pineapple plantlets during acclimatization. The bacteria were sprayed immediately after transplanting to the ex vitro environment; the plants were then sprayed every 4 week. Subsequently (4 months) the evaluated variables included plantlet fresh and dry weights, leaf and root lengths, and composition of minerals, amino-acids, carbohydrates and proteins. Photosynthesis indicators were also evaluated. Significant effects of the application of Azotobacter over pineapple plantlets during acclimatization were observed in the mineral, amino-acid, carbohydrate and protein levels, as well as, in the photosynthesis indicators. Contrastingly, plant growth parameters showed modest increases caused by the bacteria, although they were statistically significant. Looking into specific minerals, the following significant effects of Azotobacter should be highlighted: increased levels of nitrogen, phosphorous, potassium, magnesium, copper and zinc. Moreover, contents of all amino-acids recorded showed significant increases in their levels in sprayed plantlets. Carbohydrates were also increased in leaves of plantlets bio-fertilized with the bacteria, mainly sucrose and fructose. Chlorophyll b levels were also significantly increased by Azotobacter. The biofertilizer did not modify levels of calcium, iron or manganese.  相似文献   
53.
The possibility of an endogenous presence of the glucocorticoid prednisolone has already been demonstrated in bovine and horse urine, with the aim of clarifying its origin in this matrix, which is used by official agencies for the control of illicit treatments. From this point of view, the endogenous nature of prednisolone could be a major topic in doping control of both amateur and professional human athletes. A study was therefore made on 34 human volunteers (13 males and 21 females; aged 22–62) to detect the presence of prednisolone in their urine by HPLC–MS3. One of the volunteers underwent vernal allergy treatment with betamethasone for two subsequent years. An investigation was carried out with the aim of verifying if the suppression, and the circadian rhythm, of cortisol urinary levels could also apply to prednisolone. The results of the study show that prednisolone was present in the urine of all 34 volunteers, with a concentration very close to 100-times lower that of cortisol, with no dependence on gender. The same ratio (1/100) was observed in the prednisolone and cortisol levels detected during the 24 h together with the suppression of prednisolone by betamethasone treatment.These data demonstrate the endogenous nature of low concentrations of prednisolone in human urine, and motivate further studies about the biosynthetic pathways of this corticosteroid and its relationship with stress in humans, as already described in cows.  相似文献   
54.
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.  相似文献   
55.
Nitric oxide (NO) is a small gaseous molecule, with a free radical nature that allows it to participate in a wide spectrum of biologically important reactions. NO is an endogenous product in plants, where different biosynthetic pathways have been proposed. First known in animals as a signaling molecule in cardiovascular and nervous systems, it has turned up to be an essential component for a wide variety of hormone-regulated processes in plants. Adaptation of plants to a changing environment involves a panoply of processes, which include the control of CO2 fixation and water loss through stomatal closure, rearrangements of root architecture as well as growth restriction. The regulation of these processes requires the concerted action of several phytohormones, as well as the participation of the ubiquitous molecule NO. This review analyzes the role of NO in relation to the signaling pathways involved in stomatal movement, plant growth and senescence, in the frame of its interaction with abscisic acid, auxins, gibberellins, and ethylene.  相似文献   
56.
Caveolin‐1 (CAV1) is the principal structural component of caveolae which functions as scaffolding protein for the integration of a variety of signaling pathways. In this study, we investigated the involvement of CAV1 in endothelial cell (EC) functions and show that siRNA‐induced CAV1 silencing in the human EC line EA.hy926 induces distinctive morphological changes, such as a marked increase in cell size and formation of stress fibers. Design‐based stereology was employed in this work to make unbiased quantification of morphometric properties such as volume, length, and surface of CAV1 silenced versus control cells. In addition, we showed that downregulation of CAV1 affects cell cycle progression at G1/S phase transition most likely by perturbation of AKT signaling. With the aim to assess the contribution of CAV1 to typical biological processes of EC, we report here that CAV1 targeting affects cell migration and matrix metalloproteinases (MMPs) activity, and reduces angiogenesis in response to VEGF, in vitro. Taken together our data suggest that the proper expression of CAV1 is important not only for maintaining the appropriate morphology and size of ECs but it might represent a prospective molecular target for studying key biological mechanisms such as senescence and tumorigenesis. J. Cell. Biochem. 114: 1843–1851, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
57.
Among starchy seeds, rice has the unique capacity to germinate successfully under complete anaerobiosis. In this conditions, starch degradation is supported by a complete set of starch-degrading enzymes that are absent or inactive in cereals except rice. A characterization of carbohydrate metabolism and starch-degrading enzyme activity across twenty-nine genotypes of Oryza sativa L. is presented here. The zymogram of amylolytic activities present in rice embryos and endosperms under anaerobic conditions seven days after sowing (DAS) revealed marked differences among cultivars. Coleoptile elongation was positively correlated with total amylolytic activities and α-amylase activity in embryos, and negatively correlated with α-amylase activity in endosperm. Moreover, carbohydrate content in embryos was found to be positively correlated with total amylolytic activities under anaerobic conditions, while a negative relationship was recorded in the endosperm. Carbohydrate status in rice seedlings has a primary importance in sustaining coleoptile elongation towards the surface. The relationship between carbohydrate level in embryo and anoxic germination, as well as with total amylolytic activities present in rice embryo under anaerobic condition 7 DAS, is consistent with the role of sugar metabolism to support rice germination under oxygen-deprived environment.  相似文献   
58.
59.
Aloin, a natural anthracycline from aloe plant, is a hydroxyanthraquinone derivative shown to have antitumor properties. This study demonstrated that aloin exerted inhibition of cell proliferation, adhesion and invasion abilities of B16-F10 melanoma cells under non-cytotoxic concentrations. Furthermore, aloin induced melanoma cell differentiation through the enhancement of melanogenesis and transglutaminase activity. To improve the growth-inhibiting effect of anticancer agents, we found that the combined treatment of cells with aloin and low doses of cisplatin increases the antiproliferative activity of aloin. The results suggest that aloin possesses antineoplastic and antimetastatic properties, exerted likely through the induction of melanoma cell differentiation.  相似文献   
60.
A plant’s eventual size depends on the integration of its genetic program with environmental cues, which vary on a daily basis. Both efficient carbon metabolism and the plant hormone gibberellin are required to guarantee optimal plant growth. Yet, little is known about the interplay between carbon metabolism and gibberellins that modulates plant growth. Here, we show that sugar starvation in Arabidopsis thaliana arising from inefficient starch metabolism at night strongly reduces the expression of ent-kaurene synthase, a key regulatory enzyme for gibberellin synthesis, the following day. Our results demonstrate that plants integrate the efficiency of photosynthesis over a period of days, which is transduced into a daily rate of gibberellin biosynthesis. This enables a plant to grow to a size that is compatible with its environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号